
Computing efficiently floats of all activities in a
series-parallel network with duration intervals∗

Paweł Zieliński
Institute of Mathematics,

Wrocław University of Technology,

Wybrzeże Wyspiańskiego 27,

50-370 Wrocław, Poland

pziel@im.pwr.wroc.pl

Abstract

The paper deals with the problem of computing intervals of possible val-
ues of floats for all activities in a series-parallel network with duration intervals.
We present an O(n) time algorithm, using graph reductions, for computing the
interval of possible values of floats for a single activity and an algorithm for com-
puting the intervals for all activities in the network that runsO(n log n) time and
requires a linear space for a data structure.

Keywords: Graph reductions; Series-parallel graph; Project scheduling; Data inter-
vals

1 Introduction

One of the basic problems in project scheduling is that of the identification of the
critical activities, and determining the earliest and latest starting times of activities in
an activity network representing a project, where activities with given duration times
are related to each other by means of precedence constraints. The identification of
critical activities, i.e. the activities which, under the assumption of minimum project
duration, have no time float for their execution and must be started and completed on
strictly determined moments, is carried out via the Critical Path Method [11] (CPM).
This method also calculates for each activity, as a by-product, the earliest and latest
starting times of activities. The difference between these calculated values is the float
of activity. An activity is critical if and only if its float is equal to zero. Therefore,
under the assumption that the durations of activities are precisely known, the prob-
lem of determining all these project characteristics is rather simple. When activity
duration times are ill-known the problem becomes more complicated even if their es-
timations are modeled by intervals. The overwhelming part of the literature devoted
to this topic adopts an stochastic approach to model uncertain durations and thus leads

∗This work was supported by grant no. 7T11F02120 from the State Committee for Scientific Research
(Komitet Badań Naukowych).

1

to intractable problems that are still partially unsolved, except for series parallel net-
works (see [12] for a bibliography). On the other hand there is a fuzzy approach, i.e.
uncertain durations are modeled by fuzzy numbers, The interval approach seems to
have existed only as a special case of the fuzzy approach. Since the late 70’s several
authors have tried to provide methods for determining the earliest and latest starting
times of activities and the identification of critical activities in networks with uncertain
durations modeled by fuzzy or interval numbers [3],[10],[13],[14] (see [4] for a brief
survey and a full bibliography). The proposed methods, mainly based on the CPM,
calculate the earliest starting times of activities in correct a way, but they fail to cal-
culate the latest starting times. So, floats can no longer be recovered from earliest and
latest starting times and do not lead to the unique identification of critical activities.
Recently, Chanas et al. [4], [5] have studied the possible and necessary criticality of
activities in networks with interval duration times. Dubois et al. [8] have studied these
notions of criticality from the point of view of floats. An activity is necessarily critical
if it is critical whatever the actual values of activity durations turn out to be. An activ-
ity is possibly critical, when there exist values of durations leading to a configuration
of the network where the activity is critical. In [6], it has been proved that the problem
of evaluating the possible criticality of an activity is strongly NP-complete for a gen-
eral network and remainsNP-complete even when a network is restricted to be planar
(see [7]). A direct consequence of these complexity results is the complexity of the
problem of determining the interval (bounds) of possible values of floats for a given
activity in networks with interval duration times. Namely, the problem of computing
the lower bound of the interval is strongly NP-hard for general networks and remains
NP-hard even for planar networks. Unfortunately, the question, still unanswered, is
whether the problem of computing the upper bound is polynomially solvable. Both
problems have been completely solved by Fargier et al. [9] when a network is series
parallel. Fargier et al. have provided O(n) algorithms for them and an O(n) algo-
rithm for computing the bounds on latest starting times of an activity for this network.
(In [17], there has been given an O(mn) algorithm for computing the bounds on latest
starting times of an activity for a general network).

In this paper we wish to investigate the problem of computing the bounds on floats
of all activities in a series-parallel network, where activity duration times are specified
as interval numbers. The paper is organized as follows. Section 2 reviews classical
graph-theoretic definitions and notations that will be used throughout the paper. Sec-
tion 3 formally describes the problem that we consider. Section 4.1 gives an O(n)
time algorithm for computing the bounds on floats of a single activity in a series-
parallel network. Our algorithm uses series and parallel graph reductions preserving
the bounds on floats of a distinguished activity. It works for series-parallel networks
and can be used for simplifying the problem of computing the bounds on floats of a
single activity in general networks, which is NP-hard. The algorithm can be seen as
an alternative to that proposed by Fargier et al. [9]. Both algorithms have the same
complexity. Therefore, applying either our algorithm or the one provided by Fargier et
al. [9] to each activity in a network for computing the bounds on floats of all activities
leads to a method that requires O(n2) times. Section 4.2 describes an algorithm for
computing the bounds on floats of all activities in series-parallel networks that runs
in O(n log n) time and requires O(n) space for a data structure. It takes advantage
of dynamic expression trees of Cohen and Tamassia [2], dynamic trees of Sleator and

2

Tarjan [15] and results proved in [9]. Section 5 presents final remarks.

2 Preliminaries

A directed graph G =< V,A > consists of a finite set V of nodes, |V | = n, and a finite
set A of arcs (multiple arcs between the same two nodes are permitted), |A| = m. The
in-degree of node v in G, denoted by in(v), is the number of distinct arcs that enter v,
while out(v) denotes out-degree of node v in G, the number of arcs that leave v.

A two-terminal directed acyclic graph (st-dag for short) is a directed graph without
any cycle and having a unique source s and a unique sink t. This imply that an st-dag
is connected.

When we say an st-dag is series-parallel we mean that it is two-terminal arc series-
parallel (see [16]). This st-dag is recursively defined as follows (see Figure 1a):

• An st-dag having a single arc is two-terminal series-parallel

• If G1 and G2 are two-terminal series-parallel, so are the graphs constructed by
each of the following operations:

1. Parallel composition: Identify the source of G1 with the source of G2 and
the sink of G1 with the sink of G2.

2. Series composition: Identify the sink of G1 with the source of G2.

Now we recall some properties of the series-parallel st-dag.
A series-parallel st-dag G is naturally associated with a rooted binary tree T called

binary decomposition tree. Each leaf of the tree represents an arc in the series-parallel
st-dag, each internal node is marked S or P and represents the series or parallel com-
position of the series-parallel st-dags represented by subtrees rooted at the children of
the node. A subgraph of G corresponding to node δ ∈ T , denoted by Gδ , is called
pertinent st-dag of δ. Tree T is defined as follows (see Figure 1b):

• If G is a single arc, then T consists a single node.

• If G is created by the parallel composition of series-parallel st-dags G1 and G2,
let T1 and T2 be the decomposition trees of G1 and G2, respectively. The root of
T is marked P (the order of subtrees is arbitrary).

• If G is created by the series composition of series-parallel st-dags G1 and G2,
let T1 and T2 be the decomposition trees of G1 and G2, respectively. The root of
T is marked S and has left subtree T1 and right subtree T2.

We are interested in two kinds of reductions of an st-dag: parallel reduction and
series reduction. A parallel reduction at u, v replaces two parallel arcs e and f joining
u and v by a single arc g = (u, v) (Figure 2a). A series reduction at v is possible
if in(v) = out(v) = 1 then e = (u, v) and f = (v, w) are replaced by g = (u,w)
(Figure 2b).

Valdes et al. [16] give an alternative characterization of series-parallel st-dags
based on the reductions.

3

PSfrag replacements

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

s t

P

P

P

P

S

S

S

SS

(a) (b)

Figure 1: (a) A series-parallel st-dag. (b) Its binary decomposition tree.PSfrag replacements

u

u

u

u v

v

v

wwe

e

f

f

g

g

(a)

(b)

Figure 2: (a) Parallel reduction. (b) Series reduction.

Lemma 1. Let [G] denote the graph that results when a sequence of all possible series
and parallel reductions have been applied to G. An st-dag G is series-parallel, if and
only if [G] consists of a single arc.

An st-dag G is said to be irreducible if [G] = G. The above characterization
suggests an efficient algorithm to recognize series-parallel st-dags. Valdes et al. [16]
have provided O(m) algorithm. In the case when the reduction process succeeds, as a
by-product a binary decomposition tree T of original graph G may be obtained.

3 Problem description

An st-dag G =< V,A > being a project activity-on-arc model is given. V is the set of
events (nodes) and A is the set of activities (arcs). Activity durations (weights of the
arcs) are to be chosen from intervals Te = [te, te], e ∈ A. The intervals express ranges
of possible realizations of the duration times.

We introduce some additional notation. Let T denote a configuration of activity
durations te ∈ Te, e ∈ A, while tTe denotes the duration of activity e in configuration
T , and let Pij be the set of all the paths in G from i to j. We denote the length of a
path p ∈ Pij in configuration T by lTp , lTp =

∑

e∈p tTe . We use T(A) to denote the set

4

of possible configurations of the activity durations, i.e. T(A) is the Cartesian product
of corresponding intervals Te, e ∈ A.

Consider the problem of determining the interval Fω (bounds) of possible values
of floats (total floats) of a distinguished activity ω = (ι, κ), ω ∈ A that has been
originally stated in [8], [9]. The interval Fω = [f

ω
, fω] is formed by f

ω
= min fT

ω

and fω = max fT
ω , where min and max are taken over all possible configurations of

the activity durations T(A). f T
ω is the float (total floats) of activity ω in configuration

T . Float fT
ω is determined by means of formula

fT
ω = max

p∈Pst

lTp − max
p∈Psι

lTp − tTω − max
p∈Pκt

lTp . (1)

We see that the float of activity ω in (1) is expressed as a function of the lengths of
paths from s to t, i.e. its float is the difference between the length of the longest path
from s to t and the length of the longest path from s to t that traverses ω. A float
fω ∈ Fω if and only if there is a configuration of times T such that fω = fT

ω .
The topic of this paper is computing bounds on floats of all the activities in G

under the assumption that G is a series-parallel st-dag.

4 Computing bounds on floats of all activities in a series-
parallel st-dag

4.1 An O(n2) algorithm

In this section we give an O(n2) algorithm for computing bounds on floats of all
the activities in series-parallel st-dag. Before we do this, we will provide an O(n)
algorithm, which is invoked as a subroutine, to determine the bounds on floats of
a single distinguished activity in series-parallel st-dag using reductions - series and
parallel (Figure 2a, b).

The idea of our algorithms is based mainly on the fact that series and parallel
reductions preserve the bounds on floats of a distinguished activity. We first prove
this.

Let G
′

=< V
′

, A
′

> denote the st-dag obtained from the st-dag G by applying one
a series reduction or one a parallel reduction, while ω and ω

′

stand for distinguished
activities in G and in G

′

, respectively. To obtain G
′

; the duration intervals of the new
arcs are defined; a new distinguished activity ω

′

is defined; and factors ∆ and ∆ are
defined; all such that f

ω
= ∆ + f

ω
′ , fω = ∆ + fω

′ .

A series reduction replaces arcs e and f with g, A
′

= A ∪ {g} \ {e, f}, V
′

=
V \ {v},

ω
′

=

{

g if e = ω or f = ω,

ω otherwise.
(2)

Case: e = ω

[tg, tg] =

{

[te + tf , te + tf] when f
ω

is computed,

[te + tf , te + tf] when fω is computed,
(3)

∆ = 0, ∆ = 0. (4)

5

Case: f = ω. Similar to e = ω.
Case: e 6= ω and f 6= ω.

[tg, tg] = [te + tf , te + tf], ∆ = 0, ∆ = 0. (5)

A parallel reduction replaces arcs e and f with g, A
′

= A∪ {g} \ {e, f}, V
′

= V ,

ω
′

=

{

g if e = ω or f = ω,

ω otherwise.
(6)

Case: e = ω

[tg, tg] =

{

[max{te, tf},max{te, tf}] when f
ω

is computed,

[max{te, tf},max{te, tf}] when fω is computed,
(7)

∆ = max{0, tf − te}, ∆ = max{0, tf − te}. (8)

Case: f = ω. Similar to e = ω. It suffices to replace e with f in (7) and (8).
Case: e 6= ω and f 6= ω

[tg, tg] = [max{te, tf},max{te, tf}], ∆ = 0, ∆ = 0. (9)

The next proposition shows that series and parallel reductions preserve the bounds
on floats of a distinguished activity. It is the key to constructing a linear time algorithm
for computing bounds on floats.

Proposition 1. Suppose the st-dag G (not necessarily series-parallel) admits to per-
form a series reduction or a parallel reduction. Let G

′

be the st-dag obtained from G

by applying a series reduction or a parallel reduction, let ω and ω
′

be distinguished
activities in G and in G

′

, respectively, and ∆ and ∆ factors, all as in (2)–(9). Then
f

ω
= ∆ + f

ω
′ and fω = ∆ + fω

′ .

Proof. We need to show that

min
T∈

�
(A)

fT
ω = ∆ + min

T∈
�
(A′)

fT
ω
′ (resp. max

T∈
�
(A)

fT
ω = ∆ + max

T∈
�
(A′)

fT
ω
′).

Suppose G
′

is obtained from G by a series reduction. Therefore there are in G activities
e = (u, v) and f = (v, w) such that in(v) = 1 and out(v) = 1. Then activities e, f

are replaced by g = (u,w), g ∈ A
′

with time interval defined according to (3) or (5).
Consider the case when ω = e (case ω = f is similar). So ω

′

= g in G
′

by (2).
Let T o ∈ T(A) be the configuration that minimizes (resp. maximizes) f T

ω over T(A).
Thus f

ω
= fT o

ω (resp. fω = fT o

ω). Since in(v) = 1 and out(v) = 1, the configuration

T ∗ ∈ T(A) obtained from T o by increasing (resp. decreasing) duration times tT o

e and
tT

o

f to their upper (resp. lower) bounds is also optimal. In order to get a configuration

T
′

∈ T(A
′

), it is sufficient to replace tT
∗

e and tT
∗

f with tT
∗

e + tT
∗

f in configuration

T ∗. Now the distinguished activity g in G
′

has duration time tT
′

g equal to tT
∗

e + tT
∗

f ,

tT
′

g ∈ [te + tf , te + tf] (resp. tT
′

g ∈ [te + tf , te + tf]). Float fT
′

g = fT ∗

e because
the length of the longest path crossing e andf in configuration T ∗, in graph G, equals
the length of the longest path traversing g in T

′

, in G
′

, and the length of the longest

6

path in T ∗ is equal to the length of the longest path in T
′

. Our task is now to show
that T

′

minimizes (resp. maximizes) f T
g over T(A

′

). Suppose on the contrary that

there is T
′′

∈ T(A
′

), T
′′

6= T
′

, such that fT
′′

g < fT
′

g (resp. fT
′′

g > fT
′

g). By (3)

and T
′′

∈ T(A
′

), tT
′′

g ∈ [te + tf , te + tf] (resp. tT
′′

g ∈ [te + tf , te + tf]). To obtain

a configuration T ∗∗ ∈ T(A), we now replace tT
′′

g with te and tf (resp. te and tf).

Clearly, fT
′′

g = fT ∗∗

e . Since fT
′′

g < fT
′

g (resp. fT
′′

g > fT
′

g) and fT
′

g = fT ∗

e , we have
fT ∗∗

e < fT ∗

e (resp. fT ∗∗

e > fT ∗

e), which contradicts the optimality of T ∗. Therefore,
f

e
= f

g
(resp.f e = f g) and ∆ = 0 (resp. ∆ = 0).

Consider the case when ω 6= e and ω 6= f . By (2) ω
′

= ω in G
′

. Let T ∗ ∈ T(A) be
the configuration that minimizes (resp. maximizes) f T

ω , T ∈ T(A). Let us replace tT
∗

e

and tT
∗

f with tT
∗

e + tT
∗

f in T ∗. In this new configuration T
′

∈ T(A
′

) tT
′

g = tT
∗

e + tT
∗

f .

Float fT
′

ω
′ = fT ∗

ω , since the lengths of longest paths in configuration T ∗ and T
′

remain

unchanged. Similarly to the case when ω = e, we can see that T
′

minimizes (resp.
maximizes) fT

ω
′ over T(A

′

). Thus, f
ω

= f
ω
′ (resp.fω = fω

′) and ∆ = 0 (resp.

∆ = 0).
Now suppose G

′

is obtained from G by a parallel reduction. Therefore there exist
in G parallel activities e = (u, v) and f = (u, v). Then activities e, f are replaced by
g = (u, v), g ∈ A

′

with time interval defined according to (7) or (9).
Consider the case when ω = e (the same reasoning applies to case ω = f). Hence

ω
′

= g in G
′

by (6). Let T o ∈ T(A) be the configuration that minimizes (resp. maxi-
mizes) fT

ω over T(A), i.e. f
ω

= fT o

ω (resp. fω = fT o

ω). Since e and f leave the same
node u and enter the same node v, it follows that the configuration T ∗ ∈ T(A) ob-
tained from T o by increasing (resp. decreasing) tT o

e and decreasing (resp. increasing)
tT

o

f to the upper and lower (resp. the lower and upper) bounds, respectively, is also

optimal. Observe that if tT
∗

e < tT
∗

f then fT ∗

e = tT
∗

f − tT
∗

e + fT ∗

f . Our next goal is to

determine the configuration T
′

∈ T(A
′

). Replacing tT
∗

e and tT
∗

f with max{tT
∗

e , tT
∗

f }

in T ∗ yields T
′

. Now tT
′

g = max{tT
∗

e , tT
∗

f }, tT
′

g ∈ [max{te, tf},max{te, tf}] (resp.

tT
′

g ∈ [max{te, tf},max{te, tf}]). If tT
∗

e < tT
∗

f then fT ∗

f = fT
′

g . Consequently

fT ∗

e = tT
∗

f − tT
∗

e + fT
′

g . Otherwise fT ∗

e = fT
′

g . This follows from the fact that the

length of longest paths have been unchanged in configurations T ∗ and T
′

. We next
claim that T

′

minimizes (resp. maximizes) f T
g over T(A

′

). Suppose, contrary to our

claim, that there is T
′′

∈ T(A
′

), T
′′

6= T
′

, such that fT
′′

g < fT
′

g (resp. fT
′′

g > fT
′

g).

tT
′′

g ∈ [max{te, tf},max{te, tf}] (resp. tT
′′

g ∈ [max{te, tf},max{te, tf}]) by (7)

and T
′′

∈ T(A
′

). Replacing tT
′′

g with te and tf (resp. te and tf) gives the configu-

ration T ∗∗ ∈ T(A). Obviously, fT
′′

g = fT ∗∗

f and so fT
′′

g = fT ∗∗

e − (tf − te) (resp.

fT
′′

g = fT ∗∗

e − (tf − te)) if te < tf (resp. te < tf). Otherwise fT
′′

g = fT ∗∗

e .
Consequently, fT ∗∗

e < fT ∗

e (resp. fT ∗∗

e > fT ∗

e), which contradicts the optimality
of T ∗. Thus f

e
= ∆ + f

g
(resp.f e = ∆ + f g) and ∆ = max{0, tf − te} (resp.

∆ = max{0, tf − te}).
We turn to the case when ω 6= e and ω 6= f . By (6) ω

′

= ω in G
′

. Let T ∗ ∈ T(A)

7

be the configuration that minimizes (resp. maximizes) f T
ω , T ∈ T(A). We replace tT

∗

e

and tT
∗

f with max{tT
∗

e , tT
∗

f } in T ∗ to get T
′

∈ T(A
′

). Hence tT
′

g = max{tT
∗

e , tT
∗

f }.

Float fT
′

ω
′ = fT ∗

ω , since the lengths of longest paths in configuration T ∗ and T
′

remain

unchanged. The fact that T
′

minimizes (resp. maximizes) f T
ω
′ over T(A

′

) follows in

the same way as in the case ω = e. Therefore, f
ω

= f
ω
′ (resp.fω = fω

′) and ∆ = 0

(resp. ∆ = 0).

Now we will build up a linear time algorithm for determining bounds on floats,
f

ω
and fω, of a distinguished activity ω using series and parallel reductions. This

algorithm can be outlined as follows: step 1: make a series or parallel reduction;
step 2: repeat step 1 until G is reduced to a single arc. If G is originally series-parallel
st-dag then Lemma 1 guarantees that the above algorithm reduces G to a single arc.
Bounds on floats f

ω
and fω are determined by initializing S ← 0 and S ← 0, applying

a series or parallel reduction to some arcs e and f , defining an arc interval of a new
arc g, letting S ← S + ∆ and S ← S + ∆ if a parallel reduction is made and e = ω

or f = ω. At the end, i.e. if the reduced graph consists of a single arc, the bounds
on floats of distinguished activity ω in the original graph are given by f

ω
= S and

fω = S. Proposition 1 guarantees that the bounds are properly computed.
The following algorithm is a linear time implementation of the one outlined above

(comments are enclosed after B).

Require: A st-dag G with node set V , |V | ≥ 2, activity set A, |A| ≥ 2, time intervals Te for
activity e ∈ A, a distinguished activity ω ∈ A.

Ensure: Bounds f
ω

, f
ω

if G is series-parallel st-dag or message that G is not series-parallel.

S ← 0; S ← 0;
Construct list, L← {v|v ∈ V, v 6= s, v 6= t} marking all such v “onlist”;
while T 6= ∅ and |A| > 1 do

Remove v from L and mark v “offlist”;
Examine arc (u, v) entering v, distinct← False;
while in(v) > 1 and not distinct do

Examine next arc (x, v) entering v;
if u = x then B A parallel reduction on arcs e = (u, v) and f = (x, v)

if (u, v) is “distinguished” or (x, v) is “distinguished” then
Mark (u, v) “distinguished”, and let S ← S + ∆ and S ← S + ∆;

end if
Apply a parallel reduction to (u, v) and (x, v) to obtain (u, v); B g = (u, v)

else
distinct← True;

end if
end while
Examine arc (v, w) leaving v, distinct← False;
while out(v) > 1 and not distinct do

Examine next arc (v, y) leaving v;
if w = y then B A parallel reduction on arcs e = (v, w) and f = (v, y)

if (v, w) is “distinguished” or (v, y) is “distinguished” then
Mark (v, w) “distinguished”, and let S ← S + ∆ and S ← S + ∆;

end if
Apply a parallel reduction to (v, w) and (v, y) to obtain (v, w); B g = (v, w)

else

8

distinct← True;
end if

end while
if in(v) = 1 and out(v) = 1 then B A series reduction

Apply a series reduction to delete v and replace (u, v) and (v, w) by a new arc (u, w);
B g = (u, w)
if (u, v) is “distinguished” or (v, w) is “distinguished” then

Mark (u, w) “distinguished”;
end if
if u 6= s and u is “offlist” then

Add u to L and mark u “onlist”;
end if
if w 6= t and w is “offlist” then

Add w to L and mark w “onlist”;
end if

end if
end while
if |A| = 1 then

print(“f
ω

=”, S, “f
ω

=”, S);
else

print(“G is not series-parallel”);
end if

The above algorithm is based on the fundamental work of Valdes et al. [16] where
the problem is the recognition of series-parallel st-dags. Therefore its correctness and
linear time complexity follow directly from Lemma 1, Proposition 1 and the correct-
ness of an algorithm for recognizing series-parallel st-dag proposed in [16]. In order
to make our algorithm running in linear time, we use for each node a doubly linked list
of the arcs entering it and a list of the arcs leaving it with corresponding arc intervals.
Such representation allows to perform each arc examination, parallel reduction and se-
ries reduction (together with defining arc interval) in O(1) time. Arguments presented
in [16] to show that an algorithm for recognizing series-parallel st-dag runs in O(m)
time apply almost verbatim to prove that our algorithm requires O(m) time.

It is interesting to notice that the presented algorithm can be used, as a subroutine,
for a simplification of the problem of computing the bounds on floats of a distinguished
activity in a non-series- parallel st-dag, which is NP-hard. Namely, first we call the
algorithm to make all possible series and parallel reductions. In this way, the com-
plexity of computing bounds can be often reduced to some degree, sometime we may
achieve a considerable simplification. By Proposition 1, the original problem is now
equivalent to the problem of computing the bounds on floats of a distinguished activity
in a reduced graph.

We now turn to the problem of computing the bounds on floats of all activities in
series-parallel st-dag G (the topic of this paper). In order to deal with it we call the
presented algorithm, as a subroutine, for each activity in G. The resulting running
time is O(m2). Note that for series-parallel st-dags m = O(n) and consequently the
running time isO(n2). If instead of our algorithm we call the one proposed in [9] then
the running time for this version is O(n2). So, both approaches require the same time.
In Section 4.2, we give an O(n log n) algorithm for the considered problem.

9

4.2 An O(n log n) algorithm

In this section we will assume that an interval weighted st-dag G =< V,A > being
a project activity-on-arc model is series-parallel (see Figure 3a). We still deal with
the problem of determining the bounds on floats of all activities in G. A solution to
this problem has been provided by Fargier et al. [9] (see also Dubois et al. [8]) as
we mention in Section 4.1. It has been based on the following theorem that allows
to determine the configuration that minimizes (resp. maximizes) quantity (1), i.e. the
float of given activity, in a series-parallel st-dag.

Theorem 1. Let G be the series-parallel st-dag, let ω = (ι, κ), ω ∈ A, be a dis-
tinguished activity, and T ∗(ω) and T∗(ω), T ∗(ω), T∗(ω) ∈ T(A), are the following
configurations:

tT
∗(ω)

e =

{

te if e ∈ Asι ∪ {ω} ∪Aκt,

te otherwise.

tT∗(ω)
e =

{

te if e ∈ Asι ∪ {ω} ∪Aκt,

te otherwise,

where Asι (resp. Aκt) stands for the set of all the activities that belong to the paths
from set Psι (resp. Pκt). Then T ∗(ω) minimizes and T∗(ω) maximizes the float of ω.

Theorem 1 shows that computing bounds on floats of a single distinguished activity
ω boils down to two invocations of the CPM, which requires O(n) time (for series-
parallel st-dags m = O(n)) and thus an algorithm provided by Fargier et al. [9] takes
O(n) time. Consequently, computing bounds on floats of all activities in G requires
O(n2) time.

Our solution to the considered problem is also based on Theorem 1. It consists in
determining implicitly two optimal configurations and computing the floats in these
configurations for each activity in G. By introducing a data structure inspired by dy-
namic expression trees of Cohen and Tamassia [2] and dynamic trees of Sleator and
Tarjan [15], we can reduce the time for computing bounds on floats to O(log n) for
each activity in G and thus computing bounds on floats of all the activities in G re-
quires O(n log n) time. In our presentation, we follow the notation of [2].

A series-parallel st-dag G may be represented by binary decomposition tree T ,
whose each node δ corresponds to the pertinent st-dag Gδ of δ. This tree can be
constructed in O(n) as we mention at the end of Section 2. Two lengths are associated
with each node δ of T : the length of the longest path from the source s(Gδ) to the sink
t(Gδ) of the pertinent st-dag Gδ of δ, denoted by lolo(δ), in which duration times are
at their lower bounds and the length of a longest s(Gδ)t(Gδ)-path of Gδ , denoted by
uplo(δ), in which duration times are at their upper bounds (values in square brackets in
Figure 3b). If node δ is a leaf, which corresponds to arc e in G, then lolo(δ) = te and
uplo(δ) = te. Lengths lolo(δ) and uplo(δ) are determined by the following formulae:

lolo(δ) =



















max
γ∈children(δ)

lolo(γ) if δ is marked P,

∑

γ∈children(δ)

lolo(γ) if δ is marked S,
(10)

10

PSfrag replacements

a

b c d e f

g

h

i
j

s t

P

P

P

P

S

S

S

SS

Ta = [3, 5]

Tb = [0, 1]

Tc = [3, 4]

Td = [1, 2]

Te = [0, 3]

Tf = [0, 2]

Tg = [2, 6]

Th = [0, 7]

Ti = [2, 4]

Tj = [5, 8]

[3, 5]

[0, 1]

[3, 4] [1, 2]

[0, 3] [0, 2]

[2, 6] [0, 7]

[2, 4] [5, 8]

[7, 12]

[7, 12]

[7, 12]

[4, 12]

[4, 12]

[0, 5]
[4, 7]

[4, 7]

[4, 6]

(a) (b)

Figure 3: (a) An interval weighted series-parallel st-dag G. (b) Its binary decompo-
sition tree T . Shown at each node δ of T is the interval being lengths of longest
s(Gδ)t(Gδ)-paths of corresponding the pertinent st-dag Gδ of δ, in which all duration
times are at their lower bounds and all duration times are at their upper bounds.

uplo(δ) =



















max
γ∈children(δ)

uplo(γ) if δ is marked P,

∑

γ∈children(δ)

uplo(γ) if δ is marked S,
(11)

where children(δ) denotes the set of children of node δ in T .
Now we characterize the dependence of the length of the longest st-path in st-

dag G, in some time configurations, on the duration time of activity e ∈ A or more
generally on the length of the longest st-path in its subgraph.

Consider two pertinent st-dags Gε =< Vε, Aε > and Gδ =< Vδ, Aδ > of ε and δ

such that Vδ ⊆ Vε ⊆ V , Aδ ⊆ Aε ⊆ A and the corresponding decomposition tree T of
G rooted at ρ. From this, it may be concluded that node δ is one of the descendants of
node ε in T (there is a path from δ to ε). The dependence of length lolo(ε) on length
lolo(δ) is characterized by pair (a, b) and so

lolo(ε) = max{lolo(δ) + a, b}.

We assign the (a, b) to the path from δ to ε. Note that this pair is different for each
path in T . If node δ is a leaf of T associated with activity ω ∈ A then the length
of the longest st-path of G in which duration times are at their lower bounds can be
determined by the following formula:

lolo(ρ) = max{lolo(δ) + a, b}. (12)

Let us denote this configuration of times by T , T ∈ T(A). Note also that now we
consider the path from δ to ρ and (a, b) is assigned to it. From (12) we conclude that
activity ω is critical (it is on the longest st-path of G) in T (or equivalently increasing

11

the duration time of ω effects the length of the longest st-path of G) if and only if
t
T
ω ≥ b− a, where t

T
ω = tω. Hence, we have the float of ω in T

fT
ω = max{0, b− a− tω}. (13)

Likewise, the dependence of length uplo(ε) on length uplo(δ) is characterized by pair
(a, b) and we have

uplo(ε) = max{uplo(δ) + a, b}.

If node δ is a leaf of T associated with activity ω ∈ A then the float of ω in configu-
ration T ∈ T(A) in which duration times are at their upper bounds can be determined
similarly to (13).

Let us focus on crucial dependences for a solution to the problem considered
in this section. The dependence of length of the longest s(Gε)t(Gε)-path of st-dag
Gε, denoted by lo∗(ε), in which the duration times of activities belonging to the set
As(Gε)s(Gδ) ∪At(Gδ)t(Gε) are at their lower bounds and the duration times of activities
belonging to the set Aε \ (As(Gε)s(Gδ) ∪ Aδ ∪ At(Gδ)t(Gε)) are at their upper bounds
on the length of the longest s(Gδ)t(Gδ)-path, denoted by lo(δ), of st-dag Gδ in which
duration times may be arbitrary chosen from time intervals is characterized by pair
(a∗, b∗) and we obtain

lo∗(ε) = max{lo(δ) + a∗, b∗}.

When node δ is a leaf of T associated with activity ω and additionally lo(δ) = tω (now
we consider the path from leaf δ to the root ρ of T with pair (a∗, b∗) associated to it).
Then lo∗(ρ) is the length of the longest st-path of G in configuration T∗(ω) (that from
Theorem 1) and can be calculated as follows

lo∗(ρ) = max{lo(δ) + a∗, b∗}. (14)

From (14) and fact that lo(δ) = tω , we deduce that ω is critical in T∗(ω) if and only if
tω ≥ b∗ − a∗. The above and Theorem 1 give the upper bound on the float of ω

fω = fT∗(ω)
ω = max{0, b∗ − a∗ − tω}. (15)

Similarly, the dependence of the length of the longest s(Gε)t(Gε)-path of st-dag
Gε, denoted by lo∗(ε), in which the duration times of activities belonging to the set
As(Gε)s(Gδ) ∪At(Gδ)t(Gε) are at their upper bounds and the duration times of activities
belonging to the set Aε \ (As(Gε)s(Gδ) ∪ Aδ ∪ At(Gδ)t(Gε)) are at their lower bounds
from the length lo(δ) is characterized by pair (a∗, b∗) and we get

lo∗(ε) = max{lo(δ) + a
∗, b∗}.

Consider the case when node δ is a leaf of T associated with activity ω and additionally
lo(δ) = tω (now we focus on the path from leaf δ to the root ρ of T). Then lo∗(ρ) is
the length of the longest st-path of G in configuration T ∗(ω) (that from Theorem 1)
can be determined as follows

lo∗(ρ) = max{lo(δ) + a
∗, b∗}. (16)

12

Pair (a∗, b∗) is assigned to the path from δ to ρ. Similar arguments to that for the upper
bounds of ω apply here and thus we have the lower bound on the float of ω

f
ω

= fT ∗(ω)
ω = max{0, b∗ − a

∗ − tω}. (17)

Pairs (a, b), (a, b), (a∗, b∗) and (a∗, b∗) are assigned to the path from δ to ε in T
and they are different for each path in T . We will show in the description of join

operation how to maintain and determine these values.

PSfrag replacements

P

P

P

P

S

S

S

SS

[3, 5]

[0, 1]

[3, 4] [1, 2]

[0, 3] [0, 2]

[2, 6] [0, 7]

[2, 4] [5, 8]

[7, 12]

[7, 12]

[7, 12]

[0, 5]

[4, 6]

Π1

Π2

Π3

τ1

σ1

τ2

σ2

τ3 σ3

Figure 4: Solid paths for the decomposition tree of Figure 3b. Solid edges are shown
in bold. Π3 and each leaf are one-node solid paths.

We store a binary decomposition tree T that describes the structure of a series-
parallel st-dag G in a data structure for dynamic trees [15]. Our approach is similar in
spirit to that for dynamic expression trees [2] . We partition tree T into a collection
of node-disjoint paths. (We use partitioning by size as in [15]) Namely, we partition
the edges of T into two kinds: solid and dashed. It is assumed that edges of T are
directed from the child to the parent. An edge (δ, ε) of T is called to be solid if the
subtree rooted at δ has more then half of the nodes of the subtree rooted at its parent
ε. Otherwise, (δ, ε) is called to be dashed. Thus at most one solid edge enters any
node. The solid edges define a collection of solid paths that partition the nodes. A
node with no incident solid edge is a one-node solid path (see Figure 4). The head σ

of a solid path Π is its bottommost node; the tail τ is its topmost node. Each solid
path Π is represented by a balanced binary tree BΠ (see Figure 5). We call it path tree.
Therefore, T is kept as a collection of path trees. Each solid path Π always satisfies
the following invariant (see Figure 4).
PATH INVARIANT. The tail τ and head σ of each solid path Π store the actual values
lolo(τ), uplo(τ) and lolo(σ), uplo(σ).

The above values are easy to find. If σ is a leaf of T associated with e ∈ A then
lolo(σ) = te and uplo(σ) = te. Otherwise, lolo(σ) and uplo(σ) are calculated from
values lolo(τ

′

), uplo(τ
′

) and lolo(τ
′′

), uplo(τ
′′

) according to equations (10) and (11),
where τ

′′

, τ
′′

∈ children(σ). These values are known, since τ
′′

and τ
′′

are tails of

13

their solid paths, which satisfy path invariant. lolo(τ) and uplo(τ) are determined
from lolo(σ) and uplo(σ) by using the path trees.

0 7

6 12

120

6 8

1

5

0

0

0

12

0 3

6 10

0 5

6 80 0

1

0 0

1 1

0 0

5 5

0

5

0

0 7

12

7

[4,6] [7,12]

PSfrag replacements

PPP SSS

� �

� �

�
∗

�
∗

� ∗ � ∗

BΠ1

τ1σ1

η

head(η) tail(η)

ζ
(a) (b)

Figure 5: (a) Format of internal nodes. (b) The path tree BΠ1 for the solid path Π1 of
Figure 4

Let us consider a solid path Π. The path is represented by path tree BΠ whose
leaves of path tree BΠ in left-to-right order correspond to the nodes on the path from
the head σ to the tail τ (see Figure 5). Every internal node η in BΠ corresponds to the
subpath of Π between its external descendants head(η) and tail(η). It contains four
pairs: (a, b), (a, b), (a∗, b∗) and (a∗, b∗) such that

lolo(tail(η)) = max{lolo(head(η)) + a, b},

uplo(tail(η)) = max{uplo(head(η)) + a, b},

lo∗(tail(η)) = max{lo(head(η)) + a∗, b∗},

lo∗(tail(η)) = max{lo(head(η)) + a
∗, b∗}.

To clarify, we show how to find lolo(τ1) and uplo(τ1) of the tail τ1 of path Π1 shown
in Figure 4. Tree BΠ1 shown in Figure 5, rooted at ζ is its path tree. Regarding the root
of a path tree is as identifying the solid path and so τ1 = tail(ζ) and σ1 = head(ζ).
Since a = 0, b = 7, a = 6, b = 12, lolo(σ1) = 4 and uplo(σ1) = 6, we immediately
get lolo(τ1) = max{0 + 4, 7} = 7 and uplo(τ1) = max{6 + 6, 12} = 12. Note that
the obtained values are the lengths of the longest st-paths of G, shown in Figure 3a, in
configurations T and T .

Our next goal is to show how to implement an operation that calculates the bounds
on floats of a given activity in O(log n).

F loats(nodenodenode γ): This operation assumes that γ is a leaf of tree T associated
with activity ω ∈ A. F loats(γ) returns a list [f

ω
, fω], where f

ω
and fω are the

bounds on floats of activity ω.

Using three following operations derived from dynamic expression trees [2] which
were derived from dynamic trees [15], we will implement F loats(γ):

14

0 7

12

120

5 9

5

0

0

0

12

0

5

0 4

5 0 0

5 5

0

5

0

0 7

12

7

5

4

12

9

PSfrag replacements

P

P

PPP

P

P

S

S

S

S

S

[3, 5]

[3, 5]

[0, 1]

[3, 4] [1, 2]

[0, 3] [0, 2]

[2, 6] [0, 7]

[7, 12]

[7, 12]

[7, 12]

[0, 5]

[4, 6]

[4, 7]

Π1

Π2

Π3

Π
′

τ1

σ1

τ2

τ3 σ3

τ
′

τ
′

σ
′

σ
′

B
Π

′

γ

(a) (b)

Figure 6: Operation expose(γ). Leaf γ is associated with activity a in G. (a) Solid
path Π

′

created by expose(γ). (b) The path tree BΠ
′ for Π

′

.

splice(pathpathpath Π): Extent the solid path Π by converting the dashed edge leaving
the tail τ of Π to solid and converting the solid edge entering the parent ε of
tail τ (if any) to dashed. This operation assumes that τ is not the root ρ of
tree T . Let Π

′

be the solid path containing ε. Operation splice(Π) is realized
as follows. First, we convert dashed edge (sib(τ), ε) to solid, where sib(τ)
denotes the sibling of τ in tree T . Next we obtain the solid path Π

′′

starting
at ε by splitting BΠ

′ . To restore the path invariant, we perform lolo(sib(τ))
and uplo(sib(τ)) and then lolo(ε) and uplo(ε). Finally, we concatenate BΠ and
BΠ′′ . Operation splice(Π) returns the extended path.

expose(nodenodenode δ): Create a solid path from δ to the root ρ of T by converting
all dashed edges to solid along the path from δ to ρ and converting solid edges
incident to this path to dashed. (See an example of expose in Figure 6 and
compare with the tree in Figure 4). Operation expose(δ) consists of a sequence
of splice. It returns the resulting solid path. This operation is always followed
by conceal, which repairs the demage caused by expose.

conceal(nodenodenode δ): It is the inverse of expose. This operation restores the original
type, solid or dashed, of the edges entering the nodes on the path from δ to the
root ρ of tree T . It consists of a sequence of splice.

In order to implement concatenations and splits of balanced binary trees that rep-
resent solid paths, we need three operations:

join(nodenodenode ζ
′

, ζ
′′

): Given the roots ζ
′

and ζ
′′

of two binary trees BΠ′ and BΠ′′

representing solid paths Π
′

and Π
′′

, combine trees into a single tree BΠ, rep-
resenting a solid path Π, by constructing a new root ζ with left child ζ

′

and
right child ζ

′′

. The pairs (a, b), (a, b), (a∗, b∗) and (a∗, b∗) of ζ are calculated

15

[7,12]

[4,6]

[4,12]

[4,12]

1

5

0 3

6 10

0 5

6 80 0

1

0 0

1 1

0 0

5 5

0

5

0

[4,6]

0

0

0

0

12

7

12

7

[7,12]

[4,12]

[4,12]

[2,6]

PSfrag replacements

PP

P

P

P

P

S

S

S

SSS

B
Π

′ B
Π

′′

τ
′

τ
′

σ
′

σ
′

τ
′′

τ
′′

σ
′′

σ
′′

ζ
′

ζ
′′

sib(τ
′

)

Π
′

Π
′′(a) (b)

Figure 7: Operation join(ζ
′

, ζ
′′

). (a) Solid paths Π
′

and Π
′′

linked by dashed edge
(τ

′

, σ
′′

). (b) The path trees representing solid paths Π
′

and Π
′′

. The resulting path tree
is given in Figure 5b.

from the pairs (a
′

, b
′

), (a
′

, b
′

), (a∗, b
′

∗
), (a∗

′

, b∗
′

) of ζ
′

and the pairs (a
′′

, b
′′

),

(a
′′

, b
′′

), (a
′′

∗
, b

′′

∗
), (a∗

′′

, b∗
′′

) of ζ
′′

.

We next derive folmulae for determining (a, b), (a, b), (a∗, b∗) and (a∗, b∗). Let
σ

′

and τ
′

be the head and tail of Π
′

and let σ
′

and τ
′

be the head and tail of Π
′

(see Figure 7). After join σ
′

and τ
′′

become the head and tail of the resulting
solid path Π, ~ is the binary operation such that

a ~ b =

{

max{a, b} if σ
′′

is marked P,

a + b if σ
′′

is marked S.

The following dependence holds for Π
′

lolo(τ
′

) = max{lolo(σ
′

) + a
′

, b
′

}.

Length lolo(σ
′′

) is calculated from its children

lolo(σ
′′

) = lolo(τ
′

) ~ lolo(sib(τ
′

)).

Also for Π
′

the following dependence holds

lolo(τ
′′

) = max{lolo(σ
′′

) + a
′′

, b
′′

}.

Combining the above equations yields

lolo(τ
′′

) = max{max{lolo(σ
′

) + a
′

, b
′

}~

lolo(sib(τ
′

)) + a
′′

, b
′′

}.

Making use of the facts that max{a+b, a+c} = a+max{b, c} and max{a,max{b, c}}
= max{max{a, b}, c} we get the dependence for Π

lolo(τ
′′

) = max{lolo(σ
′

) + a, b},

16

where

a =

{

a
′

+ a
′′

if σ
′′

is marked P,

a
′

+ a
′′

+ lolo(sib(τ
′

)) if σ
′′

is marked S,

b =

{

max{max{b
′

, lolo(sib(τ
′

))} + a
′′

, b
′′

} if σ
′′

is marked P,

max{b
′

+ a
′′

+ lolo(sib(τ
′

)), b
′′

} if σ
′′

is marked S.

Similar consideration holds for (a, b), (a∗, b∗) and (a∗, b∗) and thus we have

a =

{

a
′

+ a
′′

if σ
′′

is marked P,

a
′

+ a
′′

+ uplo(sib(τ
′

)) if σ
′′

is marked S,

b =

{

max{max{b
′

, uplo(sib(τ
′

))}+ a
′′

, b
′′

} if σ
′′

is marked P,

max{b
′

+ a
′′

+ uplo(sib(τ
′

)), b
′′

} if σ
′′

is marked S,

a∗ =

{

a
′

∗
+ a

′′

∗
if σ

′′

is marked P,

a
′

∗
+ a

′′

∗
+ lolo(sib(τ

′

)) if σ
′′

is marked S,

b∗ =

{

max{max{b
′

∗
, uplo(sib(τ

′

))} + a
′′

∗
, b

′′

∗
} if σ

′′

is marked P,

max{b
′

∗
+ a

′′

∗
+ lolo(sib(τ

′

)), b
′′

∗
} if σ

′′

is marked S,

a
∗ =

{

a∗
′

+ a∗
′′

if σ
′′

is marked P,

a∗
′

+ a∗
′′

+ uplo(sib(τ
′

)) if σ
′′

is marked S,

b
∗ =

{

max{max{b∗
′

, lolo(sib(τ
′

))}+ a∗
′′

, b∗
′′

} if σ
′′

is marked P,

max{b∗
′

+ a∗
′′

+ uplo(sib(τ
′

)), b∗
′′

} if σ
′′

is marked S.

Note. The values of the pair (a, b), (a, b), (a∗, b∗) and (a∗, b∗) of a single-node
path tree representing one-node solid path are equal to zeros.

An example of join operation on binary trees BΠ
′ and BΠ

′′ is given in Figure 7.

separate(nodenodenode ζ): Given the root ζ of a binary tree, divide the tree into two
trees with roots ζ

′

and ζ
′′

, where ζ
′

is the root of the left subtree and ζ
′′

is the
root of the right subtree. This operation does not modify pairs (a, b), (a, b),
(a∗, b∗) and (a∗, b∗) of ζ

′

and ζ
′′

.

rotateleft(nodenodenode η) (rotateleft(nodenodenode η)): Perform a single left (right) rotation
at node η. This operation can be implemented by means of separate and join.

All the above operations requires O(1) time.
After these preparations, we are now in a position to implement F loats. We im-

plement F loats(nodenodenode γ) as follows. First, we execute expose(γ), which returns solid
path Π from δ to the root ρ of tree T . Next, we compute the bounds on float of activity
ω associated with γ according to (15) and (17), i.e. f

ω
= max{0, b∗ − a∗ − tω} and

fω = max{0, b∗ − a∗ − tω}, where (a∗, b∗) and (a∗, b∗) correspond to the root ζ

of path tree BΠ. We complete float by performing conceal(γ) to restore the origi-
nal solid and dashed edges. F loats returns list [f

ω
, fω]. For example, consider the

17

state after expose(γ) given in Figure 6. Operation expose(γ) has created solid path
Π

′

. Since the actual values of (a∗, b∗) and (a∗, b∗) are in the root of BΠ′ , we can
determine the bounds on floats of activity a, f

a
= max{0, 9 − 5 − 5} = 0 and

fa = max{0, 12 − 0− 3} = 9.
Let us analyse the running time of F loats. We implement path trees as in [15], i.e.

we use globally biased binary trees [1] to represent path trees . The weight wt(δ) of
node δ of tree T is defined as

wt(δ) =















1 if δ is a leaf of T ,

1 +
∑

γ∈children(δ)
(γ,δ) is dashed

wt(γ) otherwise.

Sleator and Tarjan [15] have proved that using partitioning by size (or equivalently by
weight) and a representation of path trees as globally biased binary trees, expose and
conceal require O(log n) time. Hence, operation F loats takes O(log n) time.

By the above and using the data structure of [15], we can now formulate our main
result.

Theorem 2. Let G be a series-parallel st-dag. Then there exists a data structure that
uses O(n) space and allows to perform operation F loats in O(log n) time.

From Theorem 2 we obtain the following corollary.

Corollary 1. Let G be a series-parallel st-dag. Then there exists a data structure
that uses O(n) space and allows to compute bounds on floats of all activities in G in
O(n log n) time.

5 Final remarks

In this paper, we have considered the problem of computing bounds on floats of all
activities in a network having series-parallel topology with uncertain durations repre-
sented by means of interval numbers.

We have proposed an O(n) time algorithm, based on series and parallel reduction,
for computing the bounds on floats of a single activity in the network. Applying this
algorithm to each activity in the network leads to a method that takes O(n2) times.

We have improved this result by developing an algorithm that runs in O(n log n)
time and requires O(n) space for a data structure. Also the algorithm can be used
for evaluating the possible and necessary criticality of all activities in the network,
since an activity ω ∈ A is possibly (resp. necessarily) critical if and only if f

ω
= 0

(resp. fω = 0). Making use of results given in [9], it would be interesting to find an
O(n log n) algorithm, similar in spirit to that presented here, for computing the bounds
on latest starting times of all activities in the network.

Our algorithms (in particular the algorithm of Section 4.2) may be used for solv-
ing problems in a series-parallel network with activity duration times given in the
form of fuzzy numbers, when they are stated in the framework of possibility theory
(see [4], [5], [9]). That is, the problems of computing fuzzy floats of all the activ-
ities and their possible and necessary criticality degrees. This follows from the fact
that every fuzzy number can be decomposed into a family of intervals according to its
level-cuts.

18

References

[1] S. W. Bent, D.D. Sleator, R. E. Tarjan, Biased Search Trees, SIAM Journal on
Computing 14 (1985) 545–568.

[2] R.F. Cohen, R. Tamassia, Dynamic Expression Trees, Algorithmica 13 (1995)
245–265.

[3] S. Chanas, J. Kamburowski, The use of fuzzy variables in PERT, Fuzzy Sets and
Systems 5 (1981) 1–19.

[4] S. Chanas, D. Dubois, P. Zieliński, On the sure criticality of tasks in activity
networks with imprecise durations, IEEE Transactions on Systems, Man, and
Cybernetics - Part B: Cybernetics 32 (2002) 393–407.

[5] S. Chanas, P. Zieliński, Critical path analysis in the network with fuzzy activity
times, Fuzzy Sets and Systems 122 (2001) 195–204.

[6] S. Chanas, P. Zieliński, The computational complexity of the criticality prob-
lems in a network with interval activity times, European Journal of Operational
Research 136 (3) (2002) 541–550.

[7] S. Chanas, P. Zieliński, On the hardness of evaluating criticality of activities in
a planar network with duration intervals, Operations Research Letters 31 (2003)
53-59.

[8] D. Dubois, H. Fargier, V. Galvagnon, On latest starting times and floats in activity
networks with ill-known durations, European Journal of Operational Research
147 (2003) 266–280.

[9] H. Fargier, V. Galvagnon, D. Dubois, Fuzzy PERT in series-parallel graphs, 9-th
IEEE Int. Conf. on Fuzzy Systems, San Antonio, TX, 2000 717–722.

[10] M. Hapke, A. Jaszkiewicz, R. Słowiński, Fuzzy project scheduling system for
software development, Fuzzy Sets and Systems 67 (1994) 101–117.

[11] J.E. Kelley, M.R. Walker, Critical path planning and and Scheduling, in: Pro-
ceedings of the Eastern Joint Computational Conference 16 (1959) 160–172.

[12] F.A. Loostma, Fuzzy Logic for Planning and Decision-Making, Dordrecht:
Kluwer Acad. Publ., 1997.

[13] H. Prade, Using fuzzy sets theory in a scheduling problem: a case study, Fuzzy
Sets and Systems 2 (1979) 153–165.

[14] H. Rommelfanger, Network analysis and information flow in fuzzy environment,
Fuzzy Sets and Systems 67 (1994) 119–128.

[15] D.D. Sleator, R. E. Tarjan, A Data Structure for Dynamic Trees, Journal of Com-
puter and System Science 26 (1983) 362–391.

[16] J. Valdes, R. E. Tarjan, E. L. Lawler, The Recognition of Series Parallel Digraphs,
SIAM Journal on Computing 11 (1982) 298-313.

19

[17] P. Zieliński, Latest starting times and floats of activities in networks with uncer-
tain durations, Proceedings of An International Conference in Fuzzy Logic and
Technology, Eusflat 2003, 10-12 September 2003, Zittau, Germany, 586-591.

20

	PZ_15 - 00002
	PZ_15 - 00003
	PZ_15 - 00004
	PZ_15 - 00005
	PZ_15 - 00006
	PZ_15 - 00007
	PZ_15 - 00008
	PZ_15 - 00009
	PZ_15 - 00010
	PZ_15 - 00011
	PZ_15 - 00012
	PZ_15 - 00013
	PZ_15 - 00014
	PZ_15 - 00015
	PZ_15 - 00016
	PZ_15 - 00017
	PZ_15 - 00018
	PZ_15 - 00019
	PZ_15 - 00020
	PZ_15 - 00021

